Optimal Monte Carlo integration on closed manifolds
نویسندگان
چکیده
منابع مشابه
Geodesic Monte Carlo on Embedded Manifolds
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering me...
متن کاملToward Optimal Stratification for Stratified Monte-Carlo Integration
We consider the problem of adaptive stratified sampling for Monte Carlo integration of a noisy function, given a finite budget n of noisy evaluations to the function. We tackle in this paper the problem of adapting to the function at the same time the number of samples into each stratum and the partition itself. More precisely, it is interesting to refine the partition of the domain in area whe...
متن کاملOptimal Monte Carlo updating.
Based on Peskun's theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the Metropolis algorithm. We provide numerical results for the Potts model as an...
متن کاملMonte-Carlo and Quasi-Monte-Carlo Methods for Numerical Integration
We consider the problem of numerical integration in dimension s, with eventually large s; the usual rules need a very huge number of nodes with increasing dimension to obtain some accuracy, say an error bound less than 10−2; this phenomenon is called ”the curse of dimensionality”; to overcome it, two kind of methods have been developped: the so-called Monte-Carlo and Quasi-Monte-Carlo methods. ...
متن کاملNumerical Integration and Monte Carlo Integration
Here we will begin by deriving the basic trapezoidal and Simpson’s integration formulas for functions that can be evaluated at all points in the integration range, i.e, there are no singularities in this range. We will also show how the remaining discretization errors present in these low-order formulas can be systematically extrapolated away to arbitrarily high order; a method known as Romberg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2019
ISSN: 0960-3174,1573-1375
DOI: 10.1007/s11222-019-09894-w